Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
J Colloid Interface Sci ; 663: 396-404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412725

RESUMO

The lack of selective release ability in the tumor microenvironment and the limited efficacy of monotherapy are important factors that limit the current use of carbon monoxide (CO) donors for tumor therapy. Herein, inspired by endogenous biochemical reactions in vivo, one kind of CO-releasing nanomotor was designed for the multimodal synergistic treatment of tumor. Specifically, glucose oxidase (GOx) and 5-aminolevulinic acid (5-ALA) were co-modified onto metal-organic framework material (MIL-101) to obtain MIL-GOx-ALA nanomotors (M-G-A NMs), which exhibit excellent biocompatibility and degradation ability in tumor microenvironment. Subsequently, the released 5-ALA generates CO in the tumor microenvironment through an endogenous reaction and further acts on mitochondria to release large amounts of reactive oxygen species (ROS), which directly kill tumor cells. Furthermore, the produced ROS and the degradation products of M-G-A NMs can also provide the reaction substrate for the Fenton reaction, thereby enhancing chemodynamic therapy (CDT) and inducing apoptosis of tumor cells. Both in vitro and in vivo experimental data confirm the successful occurrence of the above process, and the combination of CO gas therapy/enhanced CDT can effectively inhibit tumor growth. This CDT-enhancing agent designed based on endogenous biochemical reactions has good prospects for tumor treatment application.


Assuntos
Nanopartículas , Neoplasias , Humanos , Monóxido de Carbono , Espécies Reativas de Oxigênio , Terapia Combinada , Ácido Aminolevulínico , Apoptose , Glucose Oxidase , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Acta Pharmacol Sin ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360931

RESUMO

Although ALK tyrosine kinase inhibitors (ALK-TKIs) have shown remarkable benefits in EML4-ALK positive NSCLC patients compared to conventional chemotherapy, the optimal sequence of ALK-TKIs treatment remains unclear due to the emergence of primary and acquired resistance and the lack of potential prognostic biomarkers. In this study, we systematically explored the validity of sequential ALK inhibitors (alectinib, lorlatinib, crizotinib, ceritinib and brigatinib) for a heavy-treated patient with EML4-ALK fusion via developing an in vitro and in vivo drug testing system based on patient-derived models. Based on the patient-derived models and clinical responses of the patient, we found that crizotinib might inhibit proliferation of EML4-ALK positive tumors resistant to alectinib and lorlatinib. In addition, NSCLC patients harboring the G1269A mutation, which was identified in alectinib, lorlatinib and crizotinib-resistant NSCLC, showed responsiveness to brigatinib and ceritinib. Transcriptomic analysis revealed that brigatinib suppressed the activation of multiple inflammatory signaling pathways, potentially contributing to its anti-tumor activity. Moreover, we constructed a prognostic model based on the expression of IL6, CXCL1, and CXCL5, providing novel perspectives for predicting prognosis in EML4-ALK positive NSCLC patients. In summary, our results delineate clinical responses of sequential ALK-TKIs treatments and provide insights into the mechanisms underlying the superior effects of brigatinib in patients harboring ALKG1269A mutation and resistant towards alectinib, lorlatinib and crizotinib. The molecular signatures model based on the combination of IL6, CXCL1 and CXCL5 has the potential to predict prognosis of EML4-ALK positive NSCLC patients.

3.
Aging (Albany NY) ; 16(2): 1767-1780, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38244583

RESUMO

Approximately 10% of gastric cancers are associated with Epstein-Barr virus (EBV). Tremella fuciformis polysaccharides (TFPs) are characterized by antioxidative and anti-inflammatory effects in different diseases. However, whether TFP improves EBV-associated gastric cancer (EBVaGC) has never been explored. The effects of TFP on EBV-infected GC cell viability were determined using a CCK-8 assay and flow cytometry. Western blotting and RT-qPCR were performed to explore the expression of ferroptosis-related proteins. The CCK-8 assay showed that TFP decreased EBV-infected GC cell viability in a dose- and time-dependent manner. Flow cytometry assays indicated that TFP significantly induced EBV-infected GC cell death. TFP also reduced the migratory capacity of EBV-infected GC cells. Furthermore, treatment with TFP significantly increased the mRNA levels of PTGS2 and Chac1 in EBV-infected GC cells. Western blot assays indicated that TFP suppressed the expression of NRF2, HO-1, GPX4 and xCT in EBV-infected GC cells. More importantly, overexpression of NRF2 could obviously rescue TFP-induced downregulation of GPX4 and xCT in EBV-infected GC cells. In summary, we showed novel data that TFP induced ferroptosis in EBV-infected GC cells by inhibiting NRF2/HO-1 signaling. The current findings may shed light on the potential clinical application of TFP in the treatment of EBVaGC.


Assuntos
Basidiomycota , Infecções por Vírus Epstein-Barr , Ferroptose , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4/genética , Neoplasias Gástricas/genética , Infecções por Vírus Epstein-Barr/complicações , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Sincalida/metabolismo
4.
Signal Transduct Target Ther ; 9(1): 11, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38177135

RESUMO

Non-small cell lung cancer (NSCLC) ranks as one of the leading causes of cancer-related deaths worldwide. Despite the prominence and effectiveness of kinase-target therapies in NSCLC treatment, these drugs are suitable for and beneficial to a mere ~30% of NSCLC patients. Consequently, the need for novel strategies addressing NSCLC remains pressing. Deubiquitinases (DUBs), a group of diverse enzymes with well-defined catalytic sites that are frequently overactivated in cancers and associated with tumorigenesis and regarded as promising therapeutic targets. Nevertheless, the mechanisms by which DUBs promote NSCLC remain poorly understood. Through a global analysis of the 97 DUBs' contribution to NSCLC survival possibilities using The Cancer Genome Atlas (TCGA) database, we found that high expression of Josephin Domain-containing protein 2 (JOSD2) predicted the poor prognosis of patients. Depletion of JOSD2 significantly impeded NSCLC growth in both cell/patient-derived xenografts in vivo. Mechanically, we found that JOSD2 restricts the kinase activity of LKB1, an important tumor suppressor generally inactivated in NSCLC, by removing K6-linked polyubiquitination, an action vital for maintaining the integrity of the LKB1-STRAD-MO25 complex. Notably, we identified the first small-molecule inhibitor of JOSD2, and observed that its pharmacological inhibition significantly arrested NSCLC proliferation in vitro/in vivo. Our findings highlight the vital role of JOSD2 in hindering LKB1 activity, underscoring the therapeutic potential of targeting JOSD2 in NSCLC, especially in those with inactivated LKB1, and presenting its inhibitors as a promising strategy for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Enzimas Desubiquitinantes , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Genes Supressores de Tumor , Fígado/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo
5.
Zhongguo Fei Ai Za Zhi ; 26(10): 789-794, 2023 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-37989342

RESUMO

The era of tumor treatment has been revolutionized by the advent of immune checkpoint inhibitors. However, while immunotherapy benefits patients, it can also lead to immune-related adverse events that may affect multiple organs and systems throughout the body, potentially even posing a life-threatening risk. The diverse clinical manifestations and onset times of these adverse events further complicate their prediction and diagnosis. The purpose of this paper is to review the clinical characteristics and predicted biomarkers of adverse events related to inhibitors at immune checkpoints, in order to help clinicians evaluate drug risks and early warn adverse events.
.


Assuntos
Neoplasias Pulmonares , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias/patologia , Imunoterapia/efeitos adversos
6.
Nat Commun ; 14(1): 5686, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709764

RESUMO

Identifying the primary site of metastatic cancer is critical to guiding the subsequent treatment. Approximately 3-9% of metastatic patients are diagnosed with cancer of unknown primary sites (CUP) even after a comprehensive diagnostic workup. However, a widely accepted molecular test is still not available. Here, we report a method that applies formalin-fixed, paraffin-embedded tissues to construct reduced representation bisulfite sequencing libraries (FFPE-RRBS). We then generate and systematically evaluate 28 molecular classifiers, built on four DNA methylation scoring methods and seven machine learning approaches, using the RRBS library dataset of 498 fresh-frozen tumor tissues from primary cancer patients. Among these classifiers, the beta value-based linear support vector (BELIVE) performs the best, achieving overall accuracies of 81-93% for identifying the primary sites in 215 metastatic patients using top-k predictions (k = 1, 2, 3). Coincidentally, BELIVE also successfully predicts the tissue of origin in 81-93% of CUP patients (n = 68).


Assuntos
Segunda Neoplasia Primária , Neoplasias Primárias Desconhecidas , Humanos , Metilação de DNA/genética , Inclusão em Parafina , Neoplasias Primárias Desconhecidas/diagnóstico , Neoplasias Primárias Desconhecidas/genética , Formaldeído
7.
J Colloid Interface Sci ; 651: 567-578, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37562299

RESUMO

The limitations of light source limit the clinical application of optical therapy technology. How to improve the application efficiency of radiant light has become the focus of researchers. Here, we synthesize a kind of UCNPs@PVP-GOx-PpIX-Fe3+ (UPGPF) nanoreactors with rare earth upconversion nanoparticles (UCNPs) as the substrate for the enhancement of ferroptosis effect by the synergistic starvation/photodynamic therapies. Firstly, glucose oxidase (GOx) and Fe3+ loaded in UPGPF nanoreactors are used to directly face the problems of insufficient H2O2 level in tumor tissue and low Fenton reaction efficiency. Further, UCNPs can absorb NIR light at 980 nm and convert low-energy photons into high-energy photons, thereby cleverly generating ultraviolet (UV) radiation induction in vivo, which can produce a synergistic effect of enhancing iron death. The in vivo experimental results of breast cancer model mice show that the UPGPF nanoreactors have significant anticancer effect and good biosafety. With the help of the optical conversion characteristics of UCNPs, this kind of treatment idea of building a UV radiation-induced microplatform in the tumor microenvironment, which leads to the synergistic enhancement of iron death effect, provides a promising innovative design strategy for tumor research.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Animais , Camundongos , Raios Ultravioleta , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Nanotecnologia , Ferro , Linhagem Celular Tumoral , Microambiente Tumoral
8.
J Colloid Interface Sci ; 650(Pt A): 67-80, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393769

RESUMO

Due to the complexity of tumors, multimodal therapy for them has always been of concern to researchers. How to design a multifunctional drug nanoplatform with cascade effect and capable of responding to specific stimuli in the tumor microenvironment is the key to achieve efficient multimodal synergistic therapy of cancer. Here, we prepare a kind of GNRs@SiO2@PDA-CuO2-l-Arg (GSPRs-CL) nanomotors for systematic treatment of tumor. First, under near-infrared (NIR) irradiation, GSPRs-CL can generate heat and exhibit excellent photothermal therapy effect. Then under acidic conditions, CuO2 can be decomposed to release Cu2+ and generate H2O2, which not only complemented the limited endogenous H2O2 in cells, but also further triggered Fenton-like reaction, converting H2O2 into •OH to kill cancer cells, thereby achieving chemodynamic therapy. Furthermore, both endogenous and exogenous H2O2 can release nitric oxide (NO) in response to the occurrence of l-Arg of nanomotors to enhance gas therapy. In addition, as a dual-mode drive, NIR laser and NO can promote the penetration ability of nanomotors at tumor sites. The experimental results in vivo show that the drug nanoplatform had good biosafety and significant tumor killing effect triggered by NIR light and acidic conditions of tumor. It provide a promising strategy for the development of advanced drug nanoplatform for cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Dióxido de Silício/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Linhagem Celular Tumoral , Raios Infravermelhos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
9.
Neuro Oncol ; 25(12): 2207-2220, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37379245

RESUMO

BACKGROUND: Brain metastasis (BM) are a devastating consequence of lung cancer. This study was aimed to screen risk factors for predicting BM. METHODS: Using an in vivo BM preclinical model, we established a series of lung adenocarcinoma (LUAD) cell subpopulations with different metastatic ability. Quantitative proteomics analysis was used to screen and identify the differential protein expressing map among subpopulation cells. Q-PCR and Western-blot were used to validate the differential proteins in vitro. The candidate proteins were measured in LUAD tissue samples (n = 81) and validated in an independent TMA cohort (n = 64). A nomogram establishment was undertaken by performing multivariate logistic regression analysis. RESULTS: The quantitative proteomics analysis, qPCR and Western blot assay implied a five-gene signature that might be key proteins associated with BM. In multivariate analysis, the occurrence of BM was associated with age ≤ 65 years, high expressions of NES and ALDH6A1. The nomogram showed an area under the receiver operating characteristic curve (AUC) of 0.934 (95% CI, 0.881-0.988) in the training set. The validation set showed a good discrimination with an AUC of 0.719 (95% CI, 0.595-0.843). CONCLUSIONS: We have established a tool that is able to predict occurrence of BM in LUAD patients. Our model based on both clinical information and protein biomarkers will help to screen patient in high-risk population of BM, so as to facilitate preventive intervention in this part of the population.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Idoso , Neoplasias Pulmonares/genética , Neoplasias Encefálicas/genética , Análise Multivariada , Nomogramas
10.
Clin Transl Oncol ; 25(12): 3527-3540, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37249759

RESUMO

BACKGROUND: Although aberrant expression of CDGSH iron sulfur domain 2 (CISD2) contributes to the tumorigenesis and progression of numerous human cancers, the biological function of CISD2 and its specific prognostic value in lung squamous cell carcinoma (LUSC) have yet to be comprehensively explored. The current study aimed to elucidate the role of CISD2 in LUSC as well as the underlying molecular mechanisms. METHODS: Immunohistochemistry was conducted to detect the protein expression of CISD2 and analyze whether high expression of CISD2 affects the overall survival (OS) of LUSC patients. Cell proliferation, colony formation, wound healing and Transwell invasion assays were performed to clarify whether CISD2 contributes to LUSC cell proliferation and disease progression. Quantitative real-time reverse transcription-PCR and western blot assays were used to detect the levels of transcription factors and key epithelial-mesenchymal transition (EMT)-related markers in LUSC cells after CISD2 knockdown and overexpression to determine whether CISD2 regulates transforming growth factor-beta (TGF-ß)-induced EMT in LUSC. RESULTS: Immunohistochemistry of human tissue microarrays containing 90 pairs of adjacent and cancerous tissues revealed that CISD2 is considerably overexpressed in LUSC and strongly linked to poor OS. Functional experiments suggested that silencing endogenous CISD2 inhibited the growth, colony formation, migration, and invasion of H2170 and H226 cell lines. Exogenous overexpression of CISD2 facilitated these phenotypes in SK-MES-1 and H2170 cells. Furthermore, CISD2 promoted EMT progression by increasing the expression of mesenchymal markers (N-cadherin, vimentin, Snail, and Slug) as well as SMAD2/3 and reducing the expression of the epithelial marker E-cadherin. Mechanistically, our studies provide the first evidence that CISD2 can promote EMT by enhancing TGF-ß1-induced Smad2/3 expression in LUSC cells. CONCLUSION: In conclusion, our research illustrates that CISD2 is highly expressed in LUSC and may facilitate LUSC proliferation and metastasis. Thus, CISD2 may serve as an independent prognostic marker and possible treatment target for LUSC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/fisiologia , Pulmão , Neoplasias Pulmonares/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
11.
Int J Cancer ; 153(3): 623-634, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141294

RESUMO

KEYNOTE-033 (NCT02864394) was a multicountry, open-label, phase 3 study that compared pembrolizumab vs docetaxel in previously treated, programmed death-ligand 1 (PD-L1)-positive, advanced non-small cell lung cancer (NSCLC), with most patients enrolled in mainland China. Eligible patients were randomized (1:1) to pembrolizumab 2 mg/kg or docetaxel 75 mg/m2 every 3 weeks. Primary endpoints were overall survival (OS) and progression-free survival and were evaluated sequentially using stratified log-rank tests, first in patients with PD-L1 tumor proportion score (TPS) ≥50% and then in patients with PD-L1 TPS ≥1% (significance threshold: P < .025, one-sided). A total of 425 patients were randomized to pembrolizumab (N = 213) or docetaxel (N = 212) between 8 September 2016 and 17 October 2018. In patients with a PD-L1 TPS ≥50% (n = 227), median OS was 12.3 months with pembrolizumab and 10.9 months with docetaxel; the hazard ratio (HR) was 0.83 (95% confidence interval [CI]: 0.61-1.14; P = .1276). Because the significance threshold was not met, sequential testing of OS and PFS was ceased. In patients with a PD-L1 TPS ≥1%, the HR for OS for pembrolizumab vs docetaxel was 0.75 (95% CI: 0.60-0.95). In patients from mainland China (n = 311) with a PD-L1 TPS ≥1%, HR for OS was 0.68 (95% CI: 0.51-0.89). Incidence of grade 3 to 5 treatment-related AEs was 11.3% with pembrolizumab vs 47.5% with docetaxel. In summary, pembrolizumab improved OS vs docetaxel in previously treated, PD-L1-positive NSCLC without unexpected safety signals; although the statistical significance threshold was not reached, the numerical improvement is consistent with that previously observed for pembrolizumab in previously treated, advanced NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Docetaxel/efeitos adversos , Docetaxel/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia
12.
Front Immunol ; 14: 1117760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122745

RESUMO

Cytoplasmic DNA is emerging as a pivotal contributor to the pathogenesis of inflammatory diseases and cancer, such as COVID-19 and lung carcinoma. However, the complexity of various cytoplasmic DNA-related pathways and their crosstalk remains challenging to distinguish their specific roles in many distinct inflammatory diseases, especially for the underlying mechanisms. Here, we reviewed the latest findings on cytoplasmic DNA and its signaling pathways in inflammatory lung conditions and lung cancer progression. We found that sustained activation of cytoplasmic DNA sensing pathways contributes to the development of common lung diseases, which may result from external factors or mutations of key genes in the organism. We further discussed the interplays between cytoplasmic DNA and anti-inflammatory or anti-tumor effects for potential immunotherapy. In sum, this review aids in understanding the roles of cytoplasmic DNAs and exploring more therapeutic strategies.


Assuntos
COVID-19 , Neoplasias , Humanos , Imunidade Inata , DNA , Neoplasias/genética , Neoplasias/terapia , Pulmão
13.
Thorac Cancer ; 14(14): 1239-1250, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028947

RESUMO

BACKGROUND: Radiotherapy is an important clinical treatment for patients with lung squamous cell carcinoma (LUSC), and resistance to radiotherapy is an important cause of recurrence and metastasis in LUSC. The aim of this study was to establish and explore the biological characteristics of radioresistant LUSC cells. MATERIALS AND METHODS: The LUSC cell lines NCI-H2170 and NCI-H520 were irradiated (4 Gy × 15Fraction). Radiosensitivity, cell apoptosis, cell cycle, and DNA damage repair were measured by clonogenic survival assay, flow cytometry, immunofluorescence for γ-H2AX foci, and Comet assay, respectively. Activation of p-ATM(Ser1981), p-CHK2(Th68), p-DNA-PKcs (Ser2056), and Ku70/Ku80 was measured by western blot. Proteomics was used to explore the differential genes and enriched signaling pathways between radioresistant cell lines and parental lines. In vivo nude mouse xenograft experiments further verified the feasibility of the radioresistant LUSC cell lines. RESULTS: After fractionated irradiation (total dose of 60 Gy), radioresistant cells had decreased radiosensitivity, increased G0/G1 phase arrest, enhanced DNA damage repair ability, and through the ATM/CHK2 and DNA-PKcs/Ku70 pathways regulated double strands break. The upregulated differential genes in radioresistant cell lines were mainly enriched in biological pathways such as cell migration and extracellular matrix (ECM)-receptor interaction. In vivo verification of decreased radiosensitivity of radioresistant cells CONCLUSIONS: Radioresistant LUSC cell lines were established by fractional radiotherapy, which regulates IR-induced DNA damage repair through ATM/CHK2 and DNA-PKcs/Ku70. Tandem Mass Tags (TMT) quantitative proteomics found that the biological process pathway of cell migration and ECM-receptor interaction are upregulated in LUSC radioresistant cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , DNA , Apoptose
14.
Zhongguo Fei Ai Za Zhi ; 26(2): 93-104, 2023 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-36872048

RESUMO

BACKGROUND: Radiotherapy is one of the most common treatments for lung cancer, and about 40%-50% of patients after radiotherapy will appear uncontrolled or recurrence in the case of local tumors. Radioresistance is the predominant cause of local therapeutic failure. Nevertheless, the lack of in vitro radioresistance models is an influential factor obstructing the study of its mechanism. Therefore, the establishment of radioresistant cell lines, H1975DR and H1299DR, was beneficial to explore the mechanism of radioresistance in lung adenocarcinoma. METHODS: The radioresistant cell lines of H1975DR and H1299DR were obtained from H1975 and H1299 cells irradiated with equal doses of X-rays; Clonogenic assays were performed to compare the clone-forming ability of H1975 vs H1975DR cells, H1299 vs H1299DR cells, then fitting cell survival curve by linear quadratic model; The comet assay was employed to examine DNA damage repair and calculate the percentage of DNA tails; The optical microscopy, CCK-8, flow cytometry, Transwell invasion assays were used to compare biological characteristics such as cell morphology, cell proliferation, apoptosis level, cycle distribution, cell migration and invasion; Western blot was carried out to measure the protein expression of DNA damage repair factors, such as DNA-PKcs, 53BP1, RAD51, and p-ATM. RESULTS: After five months of continuous irradiation and stable culture, radioresistant cell lines H1975DR and H1299DR were obtained. The cell proliferation activity, clone formation ability and DNA damage repair ability of the two radioresistant cell lines were significantly improved under X-ray irradiation. The proportion of the G2/M phase was markedly decreased and the proportion of the G0/G1 phase was increased. Cell migration and invasion ability were significantly enhanced. Relative expression levels of p-DNA-PKcs (Ser2056), 53BP1 in the nonhomologous end-joining (NHEJ) repair pathway and p-ATM (Ser1981), RAD51 in the homologous recombination (HR) repair pathway were higher than those in H1975 and H1299. CONCLUSIONS: H1975 and H1299 cell lines can be able to differentiate into lung adenocarcinoma radioresistant cell lines H1975DR and H1299DR by equal dose fractional irradiation, which provided an in vitro cytological model for the study of radiotherapy resistance mechanism of lung cancer patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Apoptose , Movimento Celular , Proliferação de Células
15.
Artigo em Inglês | MEDLINE | ID: mdl-36883991

RESUMO

A kind of drug-loaded nanomotors with deep penetration was developed to improve the therapeutic effect of ferroptosis on tumor. The nanomotors were constructed by co-loading hemin and ferrocene (Fc) on the surface of bowl-shaped polydopamine (PDA) nanoparticles. The near-infrared response of PDA makes the nanomotor have high tumor penetration capability. In vitro experiments show that the nanomotors can exhibit good biocompatibility, high light to heat conversion efficiency, and deep tumor permeability. It is worth noting that under the catalysis of H2O2 overexpressed in the tumor microenvironment, the Fenton-like reagents hemin and Fc loaded on the nanomotors can increase the concentration of toxic •OH. Furthermore, hemin can consume glutathione in tumor cells and trigger the up-regulation of heme oxygenase-1, which can efficiently decompose hemin to Fe2+, thus producing the Fenton reaction and causing a ferroptosis effect. Notably, thanks to the photothermal effect of PDA, it can enhance the generation of reactive oxygen species and thus intervene in the Fenton reaction process, thereby enhancing the ferroptosis effect photothermally. In vivo antitumor results show that the drug-loaded nanomotors with high penetrability showed an effective antitumor therapeutic effect.

16.
Front Immunol ; 14: 1082980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756121

RESUMO

Checkpoint inhibitor-related pneumonitis (CIP) is a complication of immunotherapy for malignant tumors that severely limits the treatment cycles as well as endangers patients' health. The chest CT imaging features or typing of CIP and the application of radiomics will contribute to the precise prevention, early diagnosis and instant treatment of CIP. This article reviews the advances in the CT features and the application of radiomics in CIP.


Assuntos
Neoplasias , Pneumonia , Humanos , Neoplasias/terapia , Pneumonia/induzido quimicamente , Pneumonia/diagnóstico por imagem , Imunoterapia/efeitos adversos , Tomografia Computadorizada por Raios X
17.
JTO Clin Res Rep ; 4(2): 100449, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846572

RESUMO

Introduction: c-MET is an important therapeutic target for various cancers; however, the People's Republic of China currently retails only one specific c-MET inhibitor. Our preclinical study has revealed the high selectivity of HS-10241 to suppress c-MET. This phase 1 study aims to evaluate the safety, tolerability, pharmacokinetics, and antitumor activity of the selective c-MET inhibitor (HS-10241) in patients with advanced solid tumors. Methods: Patients with locally advanced or metastatic solid tumors orally received a single or multiple dose of HS-10241 once daily or twice daily for 21 consecutive days, which included the following six regimens: 100 mg once daily, 200 mg once daily, 400 mg once daily, 600 mg once daily, 200 mg twice daily, and 300 mg twice daily. The treatment continued until disease progression, unacceptable toxicity, or treatment termination. The primary end point was the incidence of dose-limiting toxicity and maximal tolerated dose (MTD). Secondary end points included safety, tolerability, pharmacokinetics, and pharmacodynamics. Results: A total of 27 patients with advanced NSCLC received HS-10241, and dose-limiting toxicity was observed in three patients after 600 mg once-daily HS-10241 treatment. For once-daily dosing, MTD was 400 mg, and for twice-daily dosing, the maximal safe escalated dose was 300 mg, and MTD was not reached. Nausea (48.1%, 13 of 27), fatigue (37.0%, 10 of 27), and anemia (33.3%, 9 of 27) are the three most frequent treatment-emergent adverse events. At 400 mg once daily, Css,max was 5076 ng/mL and steady state area under the curve was 39,998 h × ng/mL. Patients (n = 5) with positive MET (MET exon 14-skipping, MET amplified, and MET immunohistochemistry 3+) had confirmed partial responses (n = 1) or stable disease (n = 3), with a disease control rate of 80.0%. Conclusions: The selective c-MET inhibitor HS-10241 was well tolerated and had clinical activity in advanced NSCLC, especially in patients with positive MET. Furthermore, this study expounds on the therapeutic potential of HS-10241 in patients with cancer.

18.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166670, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36822449

RESUMO

Radiotherapy is an essential treatment modality for the management of non-small cell lung cancer (NSCLC) patients. Tumor radioresistance is the major factor limiting the efficacy of radiotherapy in NSCLC patients. Our study aimed to reveal whether cancer-associated fibroblasts (CAFs), one main component of the tumor microenvironment, regulated DNA damage response of NSCLC cells following irradiation and clarify the involved mechanisms. We found CAFs inhibited irradiation-induced DNA damage while promoted DNA repair of NSCLC cells and caused cell cycle arrest in the radioresistant S phase. CAFs have the ability of up-regulating and stabilizing c-Myc, leading to the transcription activation of HK2 kinase, a key rate-limiting enzyme in glycolysis by activating Wnt/ß-catenin pathway. Attenuation of glycolysis significantly reversed the effect of CAFs on DNA damage response of NSCLC cells. By high-throughput screening of human cytokines/chemokines array, we found CAFs-secreted midkine led to the promotion of glycolysis by activating Wnt/ß-catenin pathway in NSCLC cells. In vivo, CAFs caused the radioresistance of NSCLC cells also by promoting the glycolysis in a ß-catenin signaling-dependent manner. These findings may provide novel strategies for reversing the radioresistance of NSCLC cells.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fibroblastos Associados a Câncer/patologia , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Reparo do DNA , Via de Sinalização Wnt/genética , Dano ao DNA , Glicólise , Microambiente Tumoral
19.
Mol Immunol ; 153: 135-145, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36495818

RESUMO

Chronic inflammation might lead to many malignancies, and inadequate resolution could play a crucial role in tumor invasion, progression and metastases. Afatinib is a second-generation tyrosine kinase inhibitor targeting epidermal growth factor receptor in non-small cell lung cancer. Few studies showed the correlation of afatinib and the innate immune system especially macrophage. Our study showed that afatinib could block the activation of NLRP3 inflammasome in a dose-dependent manner in macrophage, and that afatinib could prevent the assembly of NLRP3 inflammasome. Besides, afatinib could inhibit NLRP3 inflammasome activation independent of EGFR signaling. Moreover, afatinib was able to alleviate the LPS-induced sepsis in vivo. These investigations provide significant experimental evidence in afatinib as therapeutic drug for non-small cell lung cancer or other tumors and NLRP3-related diseases, and explore new target for afatinib in macrophage.


Assuntos
Afatinib , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Afatinib/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB , Inflamassomos/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , /farmacologia
20.
J Colloid Interface Sci ; 633: 679-690, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36473358

RESUMO

The limited penetration depth of nanodrugs in the tumor and the severe hypoxia inside the tumor significantly reduce the efficacy of photothermal-photodynamic synergistic therapy (PTT-PDT). Here, we synthesized a methoxypolyethylene glycol amine (mPEG-NH2)-modified walnut-shaped polydopamine nanomotor (PDA-PEG) driven by near-infrared light (NIR). At the same time, it also loaded the photosensitizer indocyanine green (ICG) via electrostatic/hydrophobicinteractions and chelated with ferric ion (Fe3+). Under the irradiation of NIR, the asymmetry of PDA-PEG morphology led to the asymmetry of local photothermal effects and the formation of thermal gradient, which can make the nanomotor move autonomously. This ability of autonomous movement was proved to be used to improve the permeability of the nanomotor in three-dimensional (3D) tumor sphere. Fe3+ can catalyze endogenous hydrogen peroxide to produce oxygen, so as to overcome the hypoxia of tumor microenvironment and thereby generate more singlet oxygen to kill tumor cells. Animal experiments in vivo confirmed that the nanomotors had a good PTT-PDT synergistic treatment effect. The introduction of nanomotor technology has brought new ideas for cancer optical therapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Verde de Indocianina/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA